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BCTX Features

e Fast Spheromak Formation with Marshall Gun
e 288 kJ Capacitor Bank

o B,, to 4.0 kG observed

e 20 MW RF Heating System

e 7. to 200 eV observed



Stochastic Field Line Transport Model

e Electron Heat Balance: U,, /T ~ B?/T3/2
e Parallel Heat Conduction: Q. ~ T7/2
e Self-Similar Decay: V X B = AE, A = const

e Gives B ~ T5/?, 8 ~ T3/? ~ B3/5



0-D Model of Magnetic Decay
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e x| 1s Braginskii parallel electron value
e A, . is area of stochastic magnetic flux

e L is equivalent length of flux line to wall



RF Heating Results

e Preionization Method obtained lower density

ne ~1—2x 10M%cm=3
e 7. to 200 eV with t = 0 RF On
e Enhanced MHD during RF Pulse

e Limited Improvement in 7p



TRAC2 Modeling of Formation

e 2-D MHD Code

e Braginskii Resistivity, Ion Viscosity

e 16 Z X 48 R (FC) 4+ 10 Z x 50 R (Gun)

e 3-D Effects NOT important during Formation
o 3-D Effects ARE important during Decay

e Close Agreement with Expt. for Formation



Figure Captions

Figure 1

Figure 2

Figure 3

(a) The Berkeley Compact Torus Experiment apparatus and
diagnostics. (b) End-on view showing magnetic probe loca-
tions.

Initial magnetic fields in the gun. (a) Side view showing the
initial poloidal fringe-field near the gun muzzle (from TRAC2
simulation) and the RBy contours and neutral density con-
tours near the gas valves immediately after breakdown. (b)
End-on view of the gun showing the quadrupolar PIG fields
formed by four permanent bar magnets located inside the in-
ner electrode near the gas valves.

B,oi (3a) and By (3b) fields measured by probes 1-5, and
circuit and gun current, and gun voltage (3c) shot 1880, t =
0 — 300us. Insets on (3a) and (3b) show expanded view of
times ¢t = 10 — 40us. TRAC2 simulations of poloidal field at
Probe P5 (3a) and gun current (3c).



Figure Captions

Figure 4 (a) Multi-shot average of B, and By vs time, with rms asym-
metry of By also shown. Zero-dimensional model of B,,; and
T, vs time. (b) Interferometer chord-averaged electron den-
sity for typical shot.

Figure 5 B,, (5a) and By (5b) fields measured by probes 1-5, and
circuit and gun current, and gun voltage (c), shot 1855 (I;, =
0), t =0 — 300pus.

Figure 6 B,, (6a) and By (6b) fields measured by probes 1-5, and
circuit and gun current, and gun voltage shot 1891, t = 0 —
300us (flipped shot).

Figure 7 Current sheath position vs time obtained from calculation of
instantaneous inductance from circuit current.

Figure 8 (a) “Ballooning” (ejection limit) current vs solenoid current,
experimentally observed and theoretical prediction using Ham-
mer’s model.(b) Poloidal Field and poloidal flux in the flux
conserver vs the initial poloidal flux in the gun (® = kI enoid),
shots 1852-1906, constant gun bank voltage = 10 kV.



Figure Captions

Figure 9

Figure 10

Figure 11

Figure 12

Poloidal field decay time vs Thomson scattering measure-
ments of T, for 34 shots at t = 118us, all experimental para-
meters held constant.

Multi-shot average of magnetic decay time 75 = B/(dB/dt)
vs time, normal and flipped shots, and the same data divided

by (B/Bpear)”®.

Thomson scattering data for three shot types: (a) No RF
heating,(b) RF-preionized (two-shot average), (c) RF heated
shot (two-shot average). (d) Thomson T, vs. B/n2® for RF-
heated shots (data) with 10% 3 limit shown.

TRAC2 simulation results for three times following discharge:
(a) t = 18.8us, (b) t = 32.7us, (c) t = 64.5us, and (d) Tay-
lor state calculation for initial gun flux. Contours are RAyg
(poloidal flux) and vectors are flow velocities. The largest

flow velocity shown is approx. 15 cm us™?!.
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Figure 2
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Figure 4
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Figure 5

Poloidal Field
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Figure 6

Poloidal Field
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Figure 7

80.0

Inductance Length

40.0

o
o
|

tion (cm)

-40.0

-posi

Z
1
o0
O
o
|

-120.0

Gun Insulator

-10

I I
10 20
Time (microseconds)

30

40



Figure 8

” Gun Current for "Ballooning"
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Figure 9

Magnetic Decay Time vs. Core Tg
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Figure 10
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Figure 12




